BRAMAT 2015

th International Conference on Materials Science & Engineering 5 – 7 March 2015, BRASOV, ROMANIA

Organized by: Faculty of Materials Science and Engineering – Transilvania University of Brasov

Supporting Organizations: Romanian Academy of Technical Sciences – ASTR, Romanian Association of Heat treatment and Surface engineering – ATTIS, Romanian Foundry Technical Association – ATTR, Romanian Welding Society – ASR

THE INFLUENCE OF THE FOAMING AGENT ON THE MECHANICAL PROPERTIES OF THE PM HYDROXYAPATITE-BASED BIOCOMPOSITES PROCESSED BY TWO-STEPS SINTERING ROUTE

O. Gingu^{1*}, D. Cojocaru², G. Sima¹, C. Teisanu¹, I.G. Bucse¹, B.-A. Olei¹, M. Mangra¹

Keywords: biocomposites, two-steps sintering, foaming, mechanical properties

Abstract: As bone tissue engineering applications, the studied biocomposites are processed by the powder metallurgy (PM) route. The powder mixture is made of hydroxyapatite submicronic powders (< 200 nm) respectively micronic (30-50 μ m) as matrix and TiH2 (100-150 μ m; 15-25% wt) as reinforcement's precursor as well as blowing agent. To increase the porosity by the space holder technique, CaCO3 powder is added (5-10% wt.) [1]. The homogenization step is performed in Pulverisette 6 ball mill (n = 200 rpm, time = 30 min.) followed by the cold compaction at 120-170 MPa. The green compacts are submitted to the two-steps sintering (TSS) route developed on the Nabertherm conventional furnace: 1st step at 900°C for few minutes and the 2nd step at 800° for 450 minutes respectively 600 minutes. The efficiency of this sintering route is accompanied by the improvement of the mechanical properties of the processed biocomposites [2-4]. The hydrogen and CO2 releasing as foaming reagents along the 2nd step dwell time determine specific Ti, TiO2 and CaO content in the biocomposites' structure. The microhardness is tested by the Vickers microindentation testing (HV) using a Vilson-Volpert 401MVA micro-hardness tester. Using the initial gradient of the unloading curves, the Instrumented Hardness (HIT) and Instrumented Elastic Modulus (EIT) will be estimated using the Oliver and Pharr model.

Selective references:

- 1. S. F. F. Mariotto et al. *Porous stainless steel for biomedical applications*, Mat. Res. 2011; 14(2), p. 146-154
 2. M. Mour et. al. *Advances in porous biomaterials for dental and orthopaedic applications*, Materials 2010, 3(5), p: 2947 2974
- 3. Y. I. Fang, D. K. Agrawal, D. M. Roy, R. Roy *Microwave sintering of hydroxyapatite ceramics*, J. Mat. Res., 9, p. 180-187
- 4. N. Iqbal et al. Microwave synthesis, characterization, bioactivity and in vitro biocompatibility of zeolite-hydroxyapatite (Zeo-HA) composite for bone tissue engineering applications. Ceramics International, 40, December 2014, p. 16091-16097

Acknowledgements: We hereby acknowledge the research project PNII-PT-PCCA-2013-4-2094, *Research of the bone substitution with biocomposite materials processed by powder metallurgy specific techniques*, acronym *BONY*, for the financial support.

¹ University of Craiova, Faculty of Mechanics, 107 Calea Bucuresti, 200512, Craiova, Romania; oanagingu@yahoo.com

² University Politehnica of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania